
Partial synchronization on a network with different classes of oscillators

Emmanuel Gräve de Oliveira* and Thomas Braun†

Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051,
91501-970 Porto Alegre, Rio Grande do Sul, Brazil

�Received 24 September 2007; published 5 December 2007�

Complete and partial synchronization have been largely studied on networks of identical coupled oscillators.
However, we study a network in which not all oscillators when uncoupled show the same dynamics and
nonetheless the network shows partial synchronization. Our system is composed by four Rössler oscillators
diffusively coupled in a ring. Oscillators 1 and 3 are identical, as 2 and 4 are also. In short, the network is said
to be composed of different classes of oscillators �in our example, two classes with two oscillators each�.
Primary synchronization is defined as the case when all oscillators on the same class are identically synchro-
nized, for all classes. Secondary synchronization is related to the other possible cases of partial synchroniza-
tion. Both are achieved for the system we have chosen, shown by means of direct integration and transverse
Lyapunov exponent computation. Furthermore, evidence of riddled basins of attraction is presented.
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Networks of coupled identical oscillators can show com-
plete and partial synchronization �1–6�. On these networks,
complete synchronization arises when all the systems present
the same behavior, i.e., every pair of oscillators is identically
synchronized. Partial synchronization occurs when some
pairs of oscillators �but not all� are identically synchronized.
In this work we study a network in which not all oscillators
have the same dynamics when uncoupled. Our system is
composed by four Rössler �7� oscillators diffusively coupled
in a ring. Oscillators 1 and 3 are identical, as 2 and 4 are
also. The system is given by the following equations
�x�i+4�=x�i��:

ẋ�i� = f�i��x�i�� + c�x�i+1� + x�i−1� − 2x�i�� , �1�

with x�j�=x�j+n�, f�1��¯�= f�3��¯�� f�2��¯�= f�4��¯�, and
coupling parameter c. We also specify each Rössler oscillator
to be

f�i��x�i�� = � − x2
�i� − x3

�i�

x1
�i� + aix2

�i�

bi + x3
�i��x1

�i� − ci� ,
� �2�

with parameters: ai=0.2, bi=0.2, and c1=c3=10.0, mean-
while c2=c4=5.7. Both types are chaotic oscillators with
Lyapunov exponents �1�0.11 and �2�0.071. In short, we
say that we have two different classes of oscillators. Al-
though all of them are Rössler oscillators, we say that they
belong to different classes because there is a big parameter
mismatch among them and the two classes have very distinct
Lyapunov exponents.

Our purpose is to investigate the identical synchroniza-
tion �2� among identical oscillators on the network as the
strength of the coupling c is changed. Complete and partial
synchronizations are related to the existence of invariant
manifolds �3�. The system above does not possess an invari-

ant manifold given by x�i�=x�j� for all i and j. This means
that the system cannot show complete synchronization, since
if x�i��t0�=x�j��t0� for all i and j and for some t0, then for
some t� t0 and some i� j, x�i��t��x�j��t� and the completely
synchronized state is lost. Even so, the system above can
have other invariant manifolds, related to partial synchroni-
zation. One can ask what kinds of partial synchronization
�patterns� are allowed. For the example chosen, regarding
partial synchronization, the invariant manifolds are the fol-
lowing:

�i� the ABAB invariant manifold of synchronization
x�1�=x�3� and x�2�=x�4� �ABAB pattern�;

�ii� the ABCB invariant manifold of synchronization x�1�,
x�2�=x�4�, and x�3� �ABCB pattern�;

�iii� the ABAC invariant manifold of synchronization
x�1�=x�3�, x�2�, and x�4� �ABAC pattern�.

Also, the whole space can be viewed as the invariant
manifold for the desynchronized motion �referred to as the
ABCD pattern�.

On networks of identical oscillators, the AAAA pattern
�for an example with n=4�, related to complete synchroniza-
tion, played an important role, since it is the pattern with the
simplest spatial structure. Our example cannot show this pat-
tern, but clearly the ABAB is of special interest, since it rep-
resents the identical synchronization among all oscillators in
the same class, for all classes present in the network. There-
fore, we will call the ABAB pattern as the primary pattern, in
contrast with the ABCB and ABAC secondary patterns. It is
interesting to note that the ABAB pattern preserves the sym-
metries of the network. The network remains the same if we
exchange oscillators 1 and 3 or 2 and 4 or both pairs. So does
the ABAB pattern, but the ABCB and ABAC patterns sponta-
neously break one of these symmetries, as also observed in
networks of identical oscillators �3�.

We begin with the primary synchronization, characteristic
of the ABAB pattern. Chaotic oscillators have sensitive de-
pendence on initial conditions. If the oscillators are un-
coupled, and the variables of the first oscillator are slightly
different from the respective variables of the third oscillator,
we should expect that the modulo of the difference between
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the respective variables of the oscillators would increase ex-
ponentially. The same happens to small differences between
the second and the fourth oscillators. Then, small amounts of
noise would drive the system away from the pattern ABAB.
In order to characterize synchronization, these small differ-
ences are required to decrease exponentially. This criterion
produces what is called a weak synchronization �8�, in which
the synchronized state is an attractor in the sense of Milnor
�9�. Strong synchronization �8� also requires the Lyapunov
stability of the attractor, and will not be studied here.

We remind that since we are studying oscillators, the syn-
chronized state must be oscillatory. Defining the Lyapunov
exponent of the synchronized state �, the cases of partial
synchronization are restricted to ��0. Adapting the proce-
dure used in previous works �1–3�, transverse Lyapunov ex-
ponents are used to identify synchronization. The first step is
to recognize that the dynamics of the synchronized state can
be fully described by the equations

ṡ�1� = f�1��s�1�� + 2c�s�2� − s�1�� , �3a�

ṡ�2� = f�2��s�2�� + 2c�s�1� − s�2�� , �3b�

where s�1�=x�1�=x�3� and s�2�=x�2�=x�4�. These equations
show that the synchronized state depends on c, different
from the case of complete synchronization. Let i=1,2 ,3 ,4
and x�i�=s��i�+�x�i�, where �i=1 if i=1,3 and �i=2 if i
=2,4. Then, the system linearized around the synchronized
state can be expressed as

�ẋ�i� = Df�i��s��i���x�i� + c��x�i+1� + �x�i−1� − 2�x�i�� . �4�

The evolution of the differences �y�1�=�x�1�−�x�3� and
�y�2�=�x�2�−�x�4� is our main focus now. If �y�1� and �y�2�

vanish exponentially fast for t→�, the network is said to
achieve primary synchronization. Writing the equations for
�ẏ�i�, one has �i=1,2�,

�ẏ�i� = Df�i��s��i���y�i� − 2c�y�i�. �5�

The transverse Lyapunov exponent is defined as

�� = lim
t→�

1

t
ln

��t�
��0�

, �6�

where ��t�=�	i��y�i��t��2. If ���0, then the small differ-
ences between oscillators 1 and 3 ��y�1��t�� and between os-
cillators 2 and 4 ��y�2��t�� decrease exponentially fast and
initial conditions near to the manifold converge to it.

In Fig. 1 we have numerically calculated both the trans-
verse and the synchronized state Lyapunov exponents from
c=0 to c=0.1. The dynamics on the manifold of synchroni-
zation is found to be chaotic except in the periodic window
0.077�c�0.079. For c�0.055 or greater, the system pri-
marily synchronizes. The minimum value of c satisfying this
condition is called cs. Thus, we have shown that in our ex-
ample primary synchronization is possible, at least under a
transverse Lyapunov exponent analysis.

Based on both the definition of the transverse Lyapunov
exponent and on Eqs. �3a�, �3b�, and �5�, it is easy to see that
if c=0, then the transverse Lyapunov exponent is the
Lyapunov exponent of the system �3a� and �3b�, or simply

�1. Synchronization and the variation of �� with c can be
better understood with the help of the substitution �y�i�

=e−2ct�y�i��, that leads to the modified equation

�ẏ�i�� = Df�i��s��i���y�i��, �7�

and the correspondent transverse Lyapunov exponent

�� = − 2c + lim
t→�

1

t
ln

���t�
���0�

= − 2c + ��� , �8�

where ���t�=�	i��y�i���t��2. Clearly, if ��� remains bounded
as c→� the system achieves primary synchronization. It will
happen when the dynamics given by Eqs. �3a� and �3b� has a
limit attractor for c→�. If the oscillators are somehow
equivalent and the coupling has the tendency of making the
difference between these attractors smaller, one can expect
that this limit exists.

Studying both ABCB and ABAC patterns, different fea-
tures �from the ABAB pattern� are remarkable. In these pat-
terns, two identical oscillators have distinct evolutions. This
spatial ordering is originated by a symmetry breaking �10�.
This can happen only if the initial conditions are different, or
the system is subjected to noise, which implies changing the
dynamics of the system. Although computer simulations are
used and some noise is introduced by rounding errors, the
spatial ordering is attributed to the random choosing of the
initial conditions.

One might expect that the ABCB pattern would be easier
to find, since it implies the identical synchronization of os-
cillators that have smaller Lyapunov exponents when un-
coupled and it is known that the system is going to show the
ABAB pattern for large c. Although counterintuitive, the op-
posite is obtained below. This result comes from the fact that
the oscillators are not weakly coupled, meaning that we can-
not consider them independently. The influence from differ-
ent oscillators changes the dynamics of each oscillator as the
coupling grows and the system must be considered as a
whole.

For the ABCB pattern dynamics we have

ṡ�1� = f�1��s�1�� + 2c�s�2� − s�1�� , �9a�

ṡ�2� = f�2��s�2�� + c�s�1� + s�3� − 2s�2�� , �9b�

FIG. 1. The Lyapunov exponents related to the ABAB pattern.
Both exponents have the same value at c=0 and the transverse
Lyapunov exponent decreases as an approximately affine function
of c. For c�0.055, the system achieves primary synchronization.
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ṡ�3� = f�1��s�3�� + 2c�s�2� − s�3�� , �9c�

where s�1�=x�1�, s�2�=x�2�=x�4�, and s�3�=x�3�. Then we define
the difference near the synchronized state as �y�1�=�x�2�

−�x�4� and derive the equation

�ẏ�1� = Df�2��s�2���y�1� − 2c�y�1�. �10�

Then, the transverse Lyapunov exponent is defined as

�� = lim
t→�

1

t
ln


�y�1��t�


�y�1��0�


. �11�

In Fig. 2 the Lyapunov exponents related to the ABCB pat-
tern are shown. The transverse Lyapunov exponent becomes
negative in the same range of c on which the system achieves
primary synchronization and there is no difference between
the synchronized state exponents. In this case, the ABCB
pattern is degenerated �3� to ABAB. Thus the network cannot
display the ABCB pattern.

For the ABAC pattern, the dynamics on the manifold of
synchronization is given by

ṡ�1� = f�1��s�1�� + c�s�2� + s�3� − 2s�1�� , �12a�

ṡ�2� = f�2��s�2�� + 2c�s�1� − s�2�� , �12b�

ṡ�3� = f�2��s�3�� + 2c�s�1� − s�3�� , �12c�

where s�1�=x�1�=x�3�, s�2�=x�2�, and s�3�=x�4�. The evolution
of the small difference �y�1�=�x�1�−�x�3� is given by

�ẏ�1� = Df�1��s�1���y�1� − 2c�y�1�. �13�

The definition of a transverse Lyapunov exponent is the same
as in the case of the ABCB pattern.

In Fig. 3 the Lyapunov exponents are calculated as a func-
tion of c for the ABAC pattern. Secondary partial synchroni-
zation is finally achieved in the range 0.042	c	0.055,
since in this region we found only this pattern. For c
�0.055, one could think that only the ABAB pattern exists.
However, comparing with Fig. 1, it can be seen that there are
traces of the coexistence of two attractors, since the
Lyapunov exponent of the synchronized state is not the same
for the ABAB and ABAC patterns. The ABAC presents a pe-

FIG. 3. The Lyapunov exponents related to the ABAC pattern.
Secondary synchronization is finally achieved for the range 0.042
	c	0.055. The existence of two basins of attraction appears for
c�0.055 between ABAC and ABAB patterns.

FIG. 4. The mean distance of the system dynamics from the
synchronization manifolds is calculated varying c for random initial
conditions. The region of coexistence of ABAB and ABAC patterns
is easily identified. The complete absence of ABCB pattern confirms
our early predictions.
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FIG. 5. Evidence of riddled basins of attraction at c=0.62. Black
points represent initial conditions leading to ABAC pattern, while
white points lead to ABAB pattern. 

 �
�� is the parallel �perpen-
dicular� component to the ABAB manifold.

FIG. 2. The Lyapunov exponents related to the ABCB pattern.
The transverse Lyapunov exponent becomes negative for nearly the
same range of c on which the system achieves primary synchroni-
zation. In this case, the ABCB pattern is degenerated to ABAB.
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riodic state, while the ABAB presents a chaotic one, showing
that the ABAC pattern is not degenerated to the ABAB pat-
tern. However, for sufficiently large c, this discrepancy be-
tween the synchronized state Lyapunov exponents vanishes.

In Fig. 4 we see exactly as stated in the last paragraph. In
this figure, we integrated our system for randomly chosen
initial conditions and searched for patterns after the transient.
We could not find the ABCB pattern, in agreement with Fig.
2. Also, the coexistence of two patterns is shown for c
�0.065. Within the framework of weak synchronization, this
coexistence of different kinds of partial synchronization can
be caused by the existence of riddled basins of attraction �11�
in our system.

Figure 5 shows the evidence of riddled basins of attrac-
tion �based on the method developed in �11�� at
c=0.62. Black �white� points represent initial conditions
leading to the ABAC �ABAB� pattern. The initial conditions
used are x�1��0�=x�3��0�= �8.625 26,4.591 68,12.5865�T,
x2,3

�2� =x2,3
�4��0�=0.308 883,7.138 78, and x1

�2�,�4��0�=−1.1612

+ �1 /�2��

�
��. The quantity 

 ��−5,5�, with increments
of 0.02� changes the initial conditions on the manifold of
synchronization, while 
� ��0, 5�, with increments of 0.01�
measures how far from it they are. No matter how near the

initial conditions are from the ABAB manifold of synchroni-
zation, there are always initial conditions in the neighbor-
hood that put the system in the ABAC pattern. As clear evi-
dence of riddled basins, we find the power law 20
�

0.49 for
the percentage of the initial conditions leading to the ABAC
pattern.

In conclusion, we have a system with possibilities of iden-
tical synchronization, even not all oscillators being identical.
We have shown that partial synchronization can arise on
such a network, including the case in which the oscillators in
the same class are identically synchronized. Also the case of
spatial ordering is shown. Explanation about these facts are
given through transverse Lyapunov exponents. We have
shown the coexistence of attractors and that our system can
present riddled basins of attraction. The strong synchroniza-
tion of the system is left as an open question. In spite of
using a specific example, we understand that a large group of
systems can have almost the same features, differing only by
a quantitative analysis.
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